6 research outputs found

    Symbiot: Congestion-Driven Multi-resource Fairness for Multi-user Sensor Networks

    Get PDF
    © 2015 IEEE.In this paper, we study the problem of multi-resource fairness in multi-user sensor networks with heterogeneous and time-varying resources. Particularly we focus on data gathering applications run on Wireless Sensor Networks (WSNs) or Internet of Things (IoT) in which users require to run a serious of sensing operations with various resource requirements. We consider both the resource demands of sensing tasks, and data forwarding tasks needed to establish multi-hop relay communications. By exploiting graph theory, queueing theory and the notion of dominant resource shares, we develop Symbiot, a light-weight, distributed algorithm that ensures multi-resource fairness between these users. With Symbiot, nodes can independently schedule its resources while maintaining network-level resource fairness through observing traffic congestion levels. Large-scale simulations based Contiki OS and Cooja network emulator show the effectiveness of Symbiot in adaptively utilizing available resources and reducing average completion times

    Practical opportunistic data collection in wireless sensor networks with mobile sinks

    Get PDF
    Wireless Sensor Networks with Mobile Sinks (WSN-MSs) are considered a viable alternative to the heavy cost of deployment of traditional wireless sensing infrastructures at scale. However, current state-of-the-art approaches perform poorly in practice due to their requirement of mobility prediction and specific assumptions on network topology. In this paper, we focus on lowdelay and high-throughput opportunistic data collection in WSN-MSs with general network topologies and arbitrary numbers of mobile sinks. We first propose a novel routing metric, Contact-Aware ETX (CA-ETX), to estimate the packet transmission delay caused by both packet retransmissions and intermittent connectivity. By implementing CA-ETX in the defacto TinyOS routing standard CTP and the IETF IPv6 routing protocol RPL, we demonstrate that CA-ETX can work seamlessly with ETX. This means that current ETXbased routing protocols for static WSNs can be easily extended to WSN-MSs with minimal modification by using CA-ETX. Further, by combing CA-ETX with the dynamic backpressure routing, we present a throughput-optimal scheme Opportunistic Backpressure Collection (OBC). Both CA-ETX and OBC are lightweight, easy to implement, and require no mobility prediction. Through test-bed experiments and extensive simulations, we show that the proposed schemes significantly outperform current approaches in terms of packet transmission delay, communication overhead, storage overheads, reliability, and scalability

    BRPL: Backpressure RPL for High-Throughput and Mobile IoTs

    No full text

    UDRF: Multi-Resource Fairness for Complex Jobs with Placement Constraints

    No full text
    corecore